First documented record of Common Swift *Apus apus* for Surinam and South America

Marijke N. de Boer, James T. Saulino and Andy C. Williams

*Received 13 October 2013; final revision accepted 30 January 2014*

*Cotinga 36 (2014): 107–109*

El 12 de julio de 2012 se observó un Vencejo Común *Apus apus* durante un estudio sistemático de aves marinas c.151 millas náuticas (280 km) aguas afuera de Surinam. Se identificó por características estructurales y detalles de plumaje. La cola claramente bifurcada se diferencia de la cola más corta, ancha y de punta cuadrada del Vencejo Goliblanco *Cypseloides cryptus*; además, no existe en América otro vencejo colilargo con un parche blanco en la garganta. Otras especies semejantes de *Apus* también se descartan. Nuestro registro es el primero en Surinam y América del Sur.

Between 17 May and 24 July 2012 systematic seabird observations were conducted in the offshore waters of Surinam north of the capital Paramaribo. During this period we identified at least three seabird species previously undocumented in Surinam (species classification following Remsen et al.): Yellow-nosed Albatross *Thalassarche chlororhynchos*, Band-rumped Storm Petrel *Oceanodroma castro* and Red-footed Booby *Sula sula*. Another seabird previously unrecorded in Surinam observed during this survey was Bulwer’s Petrel *Bulweria bulwerii*, although it was not documented photographically.

During the survey, we also documented landbirds assumed to be vagrants or migrants. On 12 July 2012, a Common Swift *Apus apus*, was observed c.151 nautical miles (280 km) off the coast of Commewijne District, Surinam (08°32′N 54°37′W; Fig. 1). The swift flew around the vessel for c.60 minutes (from 16h01 to 17h08) and was photographed (Fig. 2).

Identification

With no on-board reference material pertinent to swift identification, the bird was preliminarily identified by MDB as a White-chinned Swift *Cypseloides cryptus* due to the presence of a ‘white chin’. This species is easily confused with other species and genera of swifts. White-chinned Swift occurs in Surinam, Guyana, Venezuela and northern Brazil. A photograph was subsequently added to a ‘travel blog’ by ACW (Fig. 2A). In June 2013, we were contacted by a member of the Cornell Lab of Ornithology, who had found the ‘blog’ while searching for photographs of White-chinned Swifts (B. Keeney pers. comm.). Their conclusion was that the swift in question was not a White-chinned Swift but was an *Apus* species (T. S. Schulenberg pers. comm.).

The characteristics of the swift in the photograph included (1) a relatively large, slim, dark body, with a long deeply forked tail; (2) upper and underwing-coverts apparently darker than the primaries and secondaries; (3) very long, sharply pointed, scythe-like wings; and (4) a faint white chin patch (Fig. 2A).

Additional photographs taken by JTS (Fig. 2B–D) clearly revealed the well-defined white chin (upper throat) and scaly appearance to the lower belly and undertail-coverts due to these feather tracts having pale fringes. Pale forehead feathering extended above the eye to form a weak supercilium. Based on structural characteristics and plumage details, the bird was confirmed to be a Common Swift. The presence of white fringes on the forehead indicates that it was possibly a juvenile, although the pale trailing edge to the underwing- and upperwing-coverts of juvenile Common Swifts are not clearly visible.

The clearly forked tail does not match the shorter, broader and square-tipped tail of White-chinned Swift. Other than White-chinned Swift,
there are no dark long-tailed swifts with a white throat patch in the Americas. For example, White-tipped Swift *Aeronautes montivagus* of South America has sharply pointed wings, a rather long tail with a slight fork, dark plumage contrasting with a white throat and, unlike Common Swift, distinct white thighs. Other similar-looking *Apus* species can also be ruled out. Plain Swift *A. unicolor*, which occurs in Morocco, Madeira and the Canaries, has a mottled dark grey throat patch, is smaller with narrower wings, and has a more deeply forked tail. Pallid Swift *A. pallidus*, which mainly occurs around the Mediterranean, the Arabian Peninsula and North Africa, is slightly smaller than Common Swift, overall much browner, has less pointed wingtips, a less deeply forked tail, smaller and paler head (with a grey-white forehead), distinct dark mask and a larger white throat patch. Alexander’s Swift *A. alexandri*, which occurs in the Cape Verde, is a small bird with relatively short wings, a shallowly forked tail, and indistinct pale throat patch. Bradfield’s Swift *A. bradfieldi* from Namibia and South Africa is much paler than Common Swift. Finally, African Black Swift *A. barbatus* of East and South Africa is probably the most similar in appearance to Common Swift; however, it is much darker overall, has less pointed wingtips and darker primaries.

**Discussion**

Common Swift has an extremely large range encompassing much of Eurasia and, in winter, Africa\(^5\). It is a long-distance migrant prone to vagrancy, with records in the Arctic on Spitsbergen\(^5\), in the Atlantic on Bermuda\(^5\) and Ascension\(^14\), and in North America, on Miquelon Island, off Newfoundland (1986), and two on St Paul, Alaska (1950, 1986), with five accepted records in North America of *Apus* swifts, presumed to be this species, in Massachusetts (1995, 1996, and 2005), Pennsylvania (1996), and St. Pierre and Miquelon (2006)\(^9\). Two subspecies are currently recognised: *A. a. apus* breeds across western and northern Europe and winters mainly in the Democratic Republic of Congo, Tanzania, Zimbabwe and Mozambique; and *A. a. pelinensis* breeds from Iran to the western Himalayas, Mongolia and northern China, and winters mainly in Namibia and Botswana\(^6\).

Akesson *et al.*\(^1\) studied the migration routes of Common Swifts breeding in Sweden using light-level geolocators. They reported that autumn migration, which started in late July, initially moved south through central Europe followed by a more south-westerly course via sub-Saharan stopovers, before moving south-east to the final wintering areas in the Congo Basin. In late April, they commenced spring migration, heading first to a restricted stopover area in West Africa (Liberia) reached by crossing the Gulf of Guinea\(^7\). They then moved north-east towards Iberia, with some crossing the Mediterranean elsewhere and then heading to Sweden\(^7\).

The swift we observed probably departed its breeding area in Europe in late June or early July and became disoriented during its migration. In late June and early July there were several severe weather events in the North Atlantic. A tropical cyclone in the western North Atlantic and an African dust storm shed dust over the Atlantic as far west as Florida. Common Swifts make frequent detours
on migration to avoid crossing ecological barriers where foraging is usually impossible. Some of the birds studied by Åkesson et al.1 moved south-west over north-west Africa (e.g. Senegal / Mauritania) before heading south-east. If we speculate that this is the area where the swift became disoriented, then the distance between north-west Africa (e.g. Senegal) and our observation is c.4100 km. Swifts can reach mean migration speeds of >300 km / day (range 234–523 km / day3), thus, depending on favourable winds, the swift would have required c.13.7 days (7.8–17.5 days) to arrive off Surinam. It is also possible that the swift paused in the Cape Verdes (c.3,300 km from Surinam) where the species is an uncommon visitor6,7.

The swift we observed spent much time gliding effortlessly and it is possible that it was ‘resting’ on the ship’s updraft created by forward mobility and aided by our course into the prevailing wind, which frequently offers ‘gliding’ opportunities for flying birds at sea (pers. obs.).

Our record is the first for Surinam13 and South America12. Another long-distance migrant, Alpine Swift Tachymarptis melba has previously been recorded in French Guiana, also the first record for South America14. It is clear that even swifts become disoriented during their migrations, and it is not the first time Common Swift has crossed the Atlantic Ocean.

Acknowledgements
Many thanks to Olivier Claessens, Johan Ingels, Otte H. Ottema, Marshall Iliff, Joe Tobias, Thomas S. Schulenberg and Arie L. Spaans, who confirmed the identification. Spaans also provided advice and comments. We also thank Alex Lees for comments and suggestions on the submitted manuscript. Thanks also to Dave Bolger (Tullow Oil) and Rob van Bemmelen (IMARES), Steve Geelhoed (IMARES) and Henk B. de Boer for their support and enthusiasm.

References

Marijke N. de Boer
Wageningen IMARES, Institute for Marine Resources and Ecosystem Studies, Den Burg, the Netherlands, and Seven Seas Marine Consultancy, Delft, the Netherlands. E-mails: marijke.deboer@wur.nl; marijke.deboer@sevenseasmarine.nl.

James T. Saulino and Andy C. Williams
c/o Seven Seas Marine Consultancy, Delft, the Netherlands. E-mails: jimjsmailbox-swift@yahoo.co.uk; andywilliams1809@gmail.com.